Welcome to the von Karman Institute for Fluid Dynamics Store

33rd Computational fluid dynamics course - Novel methods for solving convection dominated systems article pay-per-view 25€/article

Be the first to review this product

Availability: In stock

€0.00

Quick Overview

33rd Computational fluid dynamics course - Novel methods for solving convection dominated systems

Article pay-per-view

Double click on above image to view full picture

Zoom Out
Zoom In

More Views

  • Article pay-per-view

* Required Fields

€0.00

Details

  • T., BARTH – NASA Ames Research Center, USA: Numerical methods for conservation laws on structured and unstructured meshes
  • C.-W., SHU – Brown University, USA: The discontinuous Galerkin method: relationship to finite difference and finite volume methods and recent developments
  • J.J.W., VAN DER VEGT 1 & H., VAN DER VEN 2 – 1University of Twente & 2National Aerospace Laboratory NLR, The Netherlands: Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid
    compressible flows
  • P., BOCHEV – Sandia National Laboratories, USA: A discourse on variational and geometric aspects of stability of discretizations
  • K., SERMEUS & H., DECONINCK - von Karman Institute for Fluid Dynamics, Belgium: Solution of steady Euler and Navier-Stokes equations using residual distribution schemes
  • R., ABGRALL 1 & M., MEZINE 2 – 1Université de Bordeaux I & 2Institut Universitaire de France, France: Residual distribution scheme for steady problems
  • M., MEZINE 1; M., RICCHIUTO 2, R., ABGRALL 3; H., DECONINCK 2 – 1Université de Bordeaux I & 3Institut Universitaire de France & 2von Karman Institute for Fluid Dynamics, 1,3France & 2Belgium: Monotone and stable residual distribution schemes on prismatic space-time elements for unsteady
    conservation laws
  • Á., CSIK , M., RICCHIUTO ; H., DECONINCK - von Karman Institute for Fluid Dynamics, Belgium: Space-time residual distribution schemes for hyperbolic conservation laws over linear and bilinear elements
  • Á., CSIK 1,2; S., POEDTS 2; H., DECONINCK 1 - 1von Karman Institute for Fluid Dynamics, Belgium & 2Katholieke Universiteit Leuven, Belgium: Application of the residual distribution method to the solution of the nonlinear system of ideal magnetohydrodynamics equations
  • J., DOBES ; M., RICCHIUTO ; H., DECONINCK - von Karman Institute for Fluid Dynamics, Belgium: Implicit space-time residual distribution method for unsteady laminar viscous flow

Additional Information

Manufacturer von Karman Institute for Fluid Dynamics

Product Tags

Use spaces to separate tags. Use single quotes (') for phrases.