Welcome to the von Karman Institute for Fluid Dynamics Store

On Antarctic Wind Engineering

Be the first to review this product

Availability: In stock

€25.00
OR

Quick Overview

VKI PHDT 2011-01, Javier Sanz Rodrigo, On Antarctic Wind Engineering, ISBN 978-2-87516-015-7, 194 pgs

On Antarctic Wind Engineering

Double click on above image to view full picture

Zoom Out
Zoom In

More Views

  • On Antarctic Wind Engineering
  • On Antarctic Wind Engineering

Details

On Antarctic Wind Engineering

By Javier Sanz Rodrigo

PhD Thesis from the von Karman Institute/Université Libre de Bruxelles, January 2011, ISBN 978-2-87516-015-7, 194 pgs


Abstract

Antarctic Wind Engineering deals with the effects of wind on the built environment. The assessment of wind induced forces, wind resource and wind driven snowdrifts are the main tasks for a wind engineer when participating on the design of an Antarctic building. While conventional Wind Engineering techniques are generally applicable to the Antarctic environment, there are some aspects that require further analysis due to the special characteristics of the Antarctic wind climate and its boundary layer meteorology.

The first issue in remote places like Antarctica is the lack of site wind measurements and meteorological information in general. In order to complement this shortage of information various meteorological databases have been surveyed. Global Reanalyses, produced by the European Met Office ECMWF, and RACMO/ANT mesoscale model simulations, produced by the Institute for Marine and Atmospheric Research of Utrecht University (IMAU), have been validated versus independent observations from a network of 115 automatic weather stations. The resolution of these models, of some tens of kilometers, is sufficient to characterize the wind climate in areas of smooth topography like the interior plateaus or the coastal ice shelves. In contrast, in escarpment and coastal areas, where the terrain gets rugged and katabatic winds are further intensified in confluence zones, the models lack resolution and underestimate the wind velocity. 

The Antarctic atmospheric boundary layer (ABL) is characterized by the presence of strong katabatic winds that are generated by the presence of surface temperature inversions in sloping terrain. This inversion is persistent in Antarctica due to an almost continuous cooling by longwave radiation, especially during the winter night. As a result, the ABL is stably stratified most of the time and, only when the wind speed is high it becomes near neutrally stratified. This thesis also aims at making a critical review of the hypothesis underlying wind engineering models when extreme boundary layer situations are faced. It will be shown that the classical approach of assuming a neutral log-law in the surface layer can hold for studies of wind loading under strong winds but can be of limited use when detailed assessments are pursued.

The Antarctic landscape, mostly composed of very long fetches of ice covered terrain, makes it an optimum natural laboratory for the development of homogeneous boundary layers, which are a basic need for the formulation of ABL theories. Flux-profile measurements, made at Halley Research Station in the Brunt Ice Shelf by the British Antarctic Survery (BAS), have been used to analyze boundary layer similarity in view of formulating a one-dimensional ABL model. A 1D model of the neutral and stable boundary layer with a transport model for blowing snow has been implemented and verified versus test cases of the literature. A validation of quasi-stationary homogeneous profiles at different levels of stability confirms that such 1D models can be used to classify wind profiles to be used as boundary conditions for detailed 3D computational wind engineering studies.

A summary of the wind engineering activities carried out during the design of the Antarctic Research Station is provided as contextual reference and point of departure of this thesis. An elevated building on top of sloping terrain and connected to an under-snow garage constitutes a challenging environment for building design. Building aerodynamics and snowdrift management were tested in the von Karman Institute L1B wind tunnel for different building geometries and ridge integrations. Not only for safety and cost reduction but also for the integration of renewable energies, important benefits in the design of a building can be achieved if wind engineering is considered since the conceptual phase of the integrated building design process.

Additional Information

Manufacturer von Karman Institute for Fluid Dynamics

Product Tags

Use spaces to separate tags. Use single quotes (') for phrases.